
CGS 3763: OS Concepts (Client-Server Computing) Page 1 © Mark Llewellyn

CGS 3763: Operating System Concepts
Spring 2006

Client-Server Computing – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cgs3763/spr2006

CGS 3763: OS Concepts (Client-Server Computing) Page 2 © Mark Llewellyn

Three-Tier Client/Server Architecture

The middle-tier server acts like a
server to the front-end client, but
also plays the role of a client to

the back-end server(s).

CGS 3763: OS Concepts (Client-Server Computing) Page 3 © Mark Llewellyn

File Cache Consistency
• When a file server is used, performance of file I/O can

be noticeably degraded relative to local file access
because of the delays imposed by the network.

• To reduce this performance penalty, individual systems
can use file caches to hold recently accessed file records.

• Because of the principle of locality (remember this from
the page replacement schemes in memory management),
use of a local file cache should reduce the number of
remote server accesses.

• Caches are consistent when they contain exact copies for
remote data.

CGS 3763: OS Concepts (Client-Server Computing) Page 4 © Mark Llewellyn

File Cache Mechanism
• The next page illustrates a typical distributed mechanism for

caching files among a networked collection of workstations.
• When a process makes a file access, the request is presented first

to the cache of that process’s workstation (“file traffic”).
• If the request is not satisfied there (a file cache miss), the request

is passed either to the local disk, if the file is stored there (“disk
traffic”), or to a file server, where the file is stored (“server
traffic”).

• At the server, the server’s cache is first interrogated and, if there
is a miss, then the server’s disk is accessed.

• The dual caching approach is used to reduce communications
traffic (client cache) and disk I/O (server cache).

CGS 3763: OS Concepts (Client-Server Computing) Page 5 © Mark Llewellyn

Typical Distributed File Cache Mechanism

CGS 3763: OS Concepts (Client-Server Computing) Page 6 © Mark Llewellyn

File Cache Consistency
• When caches always contain exact copies of remote data, we say that

the caches are consistent.
• It is possible for caches to become inconsistent when the remote data

are changes and the corresponding obsolete local cache copies are not
discarded.

– This can happened if one client modifies a file that is also cached by other clients.

• The difficulty actually occurs at two levels:
1. If a client adopts a policy of immediately writing any changes to a file back to the

server, then any other client that has a cache copy of the relevant portion of the
file will have obsolete data.

2. The problem is even worse if the client delays writing back changes to the server.
In this case, the server itself has an obsolete version of the file, and new file read
requests to the server may obtain obsolete data.

• The problem of keeping local cache copies up to date to changes in
remote data is known as the cache consistency problem.

CGS 3763: OS Concepts (Client-Server Computing) Page 7 © Mark Llewellyn

File Cache Consistency (cont.)

• The simplest approach to cache consistency is to use file-locking
techniques to prevent simultaneous access to a file by more than one
client.

– This guarantees consistency at the expense of performance and
flexibility.

• A more powerful approach (as used in the Sprite Network OS)
operates as follows:

– Any number of remote processes may open a file or reading and create
their own client cache.

– When an open file request to a server requests write access and other
processes have the file open for read access, the server takes two actions.
• First, it notifies the writing process that, although it may maintain a cache, it

must write back all altered blocks immediately upon update. There can be at
most one such client (one writing process, many reading processes).

• Second, the server notifies all reading processes that have the file open that
the file is no longer cacheable.

CGS 3763: OS Concepts (Client-Server Computing) Page 8 © Mark Llewellyn

File Cache Consistency (cont.)

• Write-through – write data through to disk as soon as they
are placed on any cache.
– Reliable, but poor performance.

• Delayed-write – modifications written to the cache and then
written through to the server later.
– Write accesses complete quickly; some data may be overwritten before

they are written back, and so need never be written at all.
– Poor reliability; unwritten data will be lost whenever a user machine

crashes.
– Variation – scan cache at regular intervals and flush blocks that have

been modified since the last scan.
– Variation – write-on-close, writes data back to the server when the file

is closed.
• Best for files that are open for long periods and frequently modified.

CGS 3763: OS Concepts (Client-Server Computing) Page 9 © Mark Llewellyn

File Cache Consistency (cont.)

CGS 3763: OS Concepts (Client-Server Computing) Page 10 © Mark Llewellyn

File Cache Consistency (cont.)

• Is locally cached copy of the data consistent with the
master copy?

• Client-initiated approach
– Client initiates a validity check.
– Server checks whether the local data are consistent with the

master copy.

• Server-initiated approach
– Server records, for each client, the (parts of) files it caches.

– When server detects a potential inconsistency, it must react.

CGS 3763: OS Concepts (Client-Server Computing) Page 11 © Mark Llewellyn

File Cache Consistency (cont.)

• In caching, many remote accesses handled efficiently by the local
cache; most remote accesses will be served as fast as local ones.

• Servers are contracted only occasionally in caching (rather than
for each access).
– Reduces server load and network traffic

– Enhances potential for scalability

• Remote server method handles every remote access across the
network; penalty in network traffic, server load, and
performance.

• Total network overhead in transmitting big chunks of data
(caching) is lower than a series of responses to specific requests
(remote-service).

CGS 3763: OS Concepts (Client-Server Computing) Page 12 © Mark Llewellyn

Middleware
• The development and deployment of client-server products has far outpaced

efforts to standardize all aspects of distributed computing, from the physical
layer up to the application layer.

• The lack of standards makes it difficult to implement an integrated, multi-
vendor, enterprise-wide client-server configuration.

• Since much of the benefit of the client-server approach is based in its
modularity and the ability to mix and match platforms and applications to
provide business solutions, this interoperability problem must be solved.

• To achieve the true benefits of the client-server approach, developers must
have a set of tools that provide a uniform means and style of access to system
resources across all platforms

• These tools enable programmers to build applications that look and feel the
same on various PCs and workstations, but they use the same method to
access data regardless of the location of that data.

CGS 3763: OS Concepts (Client-Server Computing) Page 13 © Mark Llewellyn

Middleware (cont.)

• The most common way to meet this requirement is by the use of standard
programming interfaces and protocols that sit between the application above
and the communications software and OS below.

• These standardized interfaces and protocols have become to be referred to as
middleware.

• With standard interfaces, it is easy to implement the same application on a
variety of server types and workstation types. While this obviously benefits
the customers, it also motivates the vendors to provide such interfaces. The
reason for this is that customers but applications, not servers; customers will
only choose among those server products that run the applications they want.

• The standardized protocols are needed to link these various server interfaces
back to the clients that need to access them.

• There are a variety of middleware packages ranging from the very simple to
very complex. However, they all share the capability to hide the complexities
and disparities of different network protocols and operating systems.

CGS 3763: OS Concepts (Client-Server Computing) Page 14 © Mark Llewellyn

The Role of Middleware in Client-Server Architecture

CGS 3763: OS Concepts (Client-Server Computing) Page 15 © Mark Llewellyn

Logical View of Middleware

CGS 3763: OS Concepts (Client-Server Computing) Page 16 © Mark Llewellyn

Middleware Mechanisms: Message-oriented

CGS 3763: OS Concepts (Client-Server Computing) Page 17 © Mark Llewellyn

Middleware Mechanisms: Remote Procedure Calls

CGS 3763: OS Concepts (Client-Server Computing) Page 18 © Mark Llewellyn

Middleware Mechanisms: Object Request Broker

CGS 3763: OS Concepts (Client-Server Computing) Page 19 © Mark Llewellyn

Distributed Message Passing
• It is typically the case in distributed system that the

computers do not share main memory; each is an isolated
computer system. Thus, interprocessor communication
techniques that rely on shared memory, such as
semaphores, cannot be used.

• Instead, techniques that rely on message passing are used.
– Basic message passing in a single system.

– Remote procedure calls (built on top of basic message passing).

• The figure on the next page illustrates the basic concept of
message passing.

CGS 3763: OS Concepts (Client-Server Computing) Page 20 © Mark Llewellyn

Basic Message-Passing

CGS 3763: OS Concepts (Client-Server Computing) Page 21 © Mark Llewellyn

Reliability Versus Unreliability

• Reliable message-passing guarantees delivery
if possible

– Not necessary to let the sending process know that
the message was delivered

• Send the message out into the communication
network without reporting success or failure

– Reduces complexity and overhead

CGS 3763: OS Concepts (Client-Server Computing) Page 22 © Mark Llewellyn

Blocking Versus Nonblocking

• Nonblocking
– Process is not suspended as a result of issuing a Send or Receive

– Efficient and flexible

– Difficult to debug

• Blocking
– Send does not return control to the sending process until the

message has been transmitted

– OR does not return control until an acknowledgment is received

– Receive does not return until a message has been placed in the
allocated buffer

CGS 3763: OS Concepts (Client-Server Computing) Page 23 © Mark Llewellyn

Remote Procedure Calls

• Remote procedure calls (RPC) are a variation on
basic message passing.

• RPC is a widely accepted and common method for
encapsulating communication in a distributed system.

• The essence of the technique is to allow programs on
different machines to interact using simple procedure
call/return semantics, just as if the two programs were
on the same machine.
– That is, the procedure call is used for access to remote

services.

CGS 3763: OS Concepts (Client-Server Computing) Page 24 © Mark Llewellyn

Remote Procedure Calls (cont.)

• The popularity of remote procedure calls is based on the
following advantages over basic message passing:

1. The procedure call is a widely accepted, used, and understood
abstraction.

2. The use of remote procedure calls enables remote interfaces to be
specified as a set of named operations with designated types. Thus,
the interface can be clearly documented and distributed programs can
be statically checked for type errors.

3. Since a standardized and precisely defined interface is specified, the
communication code for an application can be generated
automatically.

4. Because a standardized and precisely defined interface is specified,
developers can write client and server modules that can be moved
among computers and operating systems with little modification and
recoding.

CGS 3763: OS Concepts (Client-Server Computing) Page 25 © Mark Llewellyn

Remote Procedure Call Mechanism

CGS 3763: OS Concepts (Client-Server Computing) Page 26 © Mark Llewellyn

Client/Server Binding

• Binding specifies the relationship between the remote
procedure and the calling program.

• Non-persistent binding
– A logical connection is established at the time of the remote

procedure call. As soon as the values are returned, the
connection is terminated. (Conserves resources.)

• Persistent binding
– The connection is sustained after the procedure returns. The

same connection can then be used for subsequent remote
procedure calls.

CGS 3763: OS Concepts (Client-Server Computing) Page 27 © Mark Llewellyn

Synchronous versus Asynchronous RPCs
• Synchronous versus asynchronous RPCs is analogous to blocking versus

nonblocking message passing.
• Synchronous RPC

– This is the traditional RPC.
– Behaves much like a subroutine call.
– Easy to understand and program, but fails to fully exploit the parallelism inherent in

distributed systems, thus lowering performance.
• Asynchronous RPC

– Does not block the caller. Replies are received as and when they are needed,
allowing client execution to proceed locally in parallel with server invocation
remotely.

– A typical asynchronous RPC use is to enable a client to invoke a server repeatedly
so that the client has a number of requests in the pipeline at one time, each with its
own set of data.

– Synchronization between the client and server is achieved either by a higher-layer
application in the client and server which initiates the exchange and then checks that
all the requested actions have been performed, or, the client issues a string of
asynchronous RPCs followed by a final synchronized RPC. The server respond
only to the synchronized RPC after completing all the work requested in the
preceding asynchronous RPCs.

